Quality control despite mistranslation caused by an ambiguous genetic code.

نویسندگان

  • Benfang Ruan
  • Sotiria Palioura
  • Jeffrey Sabina
  • Laure Marvin-Guy
  • Sunil Kochhar
  • Robert A Larossa
  • Dieter Söll
چکیده

A high level of accuracy during protein synthesis is considered essential for life. Aminoacyl-tRNA synthetases (aaRSs) translate the genetic code by ensuring the correct pairing of amino acids with their cognate tRNAs. Because some aaRSs also produce misacylated aminoacyl-tRNA (aa-tRNA) in vivo, we addressed the question of protein quality within the context of missense suppression by Cys-tRNA(Pro), Ser-tRNA(Thr), Glu-tRNA(Gln), and Asp-tRNA(Asn). Suppression of an active-site missense mutation leads to a mixture of inactive mutant protein (from translation with correctly acylated aa-tRNA) and active enzyme indistinguishable from the wild-type protein (from translation with misacylated aa-tRNA). Here, we provide genetic and biochemical evidence that under selective pressure, Escherichia coli not only tolerates the presence of misacylated aa-tRNA, but can even require it for growth. Furthermore, by using mass spectrometry of a reporter protein not subject to selection, we show that E. coli can survive the ambiguous genetic code imposed by misacylated aa-tRNA tolerating up to 10% of mismade protein. The editing function of aaRSs to hydrolyze misacylated aa-tRNA is not essential for survival, and the EF-Tu barrier against misacylated aa-tRNA is not absolute. Rather, E. coli copes with mistranslation by triggering the heat shock response that stimulates nonoptimized polypeptides to achieve a native conformation or to be degraded. In this way, E. coli ensures the presence of sufficient functional protein albeit at a considerable energetic cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code

Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms are not evolutionarily conserved, and their physiological significance remains unclear. To address ...

متن کامل

Genetic code ambiguity: an unexpected source of proteome innovation and phenotypic diversity.

Translation of the genome into the proteome is a highly accurate biological process. However, the molecular mechanisms involved in protein synthesis are not error free and downstream protein quality control systems are needed to counteract the negative effects of translational errors (mistranslation) on proteome and cell homeostasis. This plus human and mice diseases caused by translational err...

متن کامل

Mistranslation and its control by tRNA synthetases

Aminoacyl tRNA synthetases are ancient proteins that interpret the genetic material in all life forms. They are thought to have appeared during the transition from the RNA world to the theatre of proteins. During translation, they establish the rules of the genetic code, whereby each amino acid is attached to a tRNA that is cognate to the amino acid. Mistranslation occurs when an amino acid is ...

متن کامل

Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused by serine/threonine misactivation.

Aminoacyl-tRNA synthetases (ARSs) establish the rules of the genetic code, whereby each amino acid is attached to a cognate tRNA. Errors in this process lead to mistranslation, which can be toxic to cells. The selective forces exerted by species-specific requirements and environmental conditions potentially shape quality-control mechanisms that serve to prevent mistranslation. A family of editi...

متن کامل

Methionine Mistranslation Bypasses the Restraint of the Genetic Code to Generate Mutant Proteins with Distinct Activities

Although mistranslation is commonly believed to be deleterious, recent evidence indicates that mistranslation can be actively regulated and be beneficial in stress response. Methionine mistranslation in mammalian cells is regulated by reactive oxygen species where cells deliberately alter the proteome through incorporating Met at non-Met positions to enhance oxidative stress response. However, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 43  شماره 

صفحات  -

تاریخ انتشار 2008